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Abstract

In antibiotics, a constant supply of new products is needed as bacteria become
resistant to the existing drugs. I estimate the effectiveness of innovation incentives
for antibiotics, introduced in 2012. In a difference-in-differences framework, I find
that the incentives have a positive effect on clinical trial success rates, but only for
projects using known technologies. To assess the long-term effect of the incentives
on market entry, I set up a dynamic structural model of pharmaceutical innovation.
The multi agent setting of the model allows the firm decisions to depend not only on
the projects’ expected cost and profit, but also on the outcomes of technologically
close projects. Counterfactual simulations show a 20% increase in the number of
market entries due the current incentive scheme, driven mostly by research subsidies.
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1 Introduction

Antibiotics are a fundamental element of modern medicine, substantially improving the

safety of treatments that expose patients to infection risk, e.g., by requiring surgical

intervention or suppressing the immune system. However, bacteria, which antibiotics

are supposed to neutralize, are sophisticated enough to develop defense mechanisms – a

problem known as antimicrobial resistance (AMR) – making antibiotics less effective over

time. Resistant infections are a major health problem and one of the top priorities in the

WHO’s agenda. Recent estimates attribute to AMR more than 33 000 deaths in the EU

in 2015 (Cassini et al., 2019), and 1.27 million deaths globally in 2019 (Murray et al.,

2022), a magnitude comparable to HIV and malaria.

AMR creates an urgent need for new antibiotics. At the same time, managing resis-

tance requires that the new drugs remain reserved for cases where other treatment options

fail, and their use is limited to a strict minimum, making the potential market size small.

Recognizing that the market size is insufficient to stimulate enough innovation, additional

incentives have been provided since 2012 for the development of new antibiotics. The ex-

isting incentives address both the high cost of developing new antibiotics by providing

additional funding for firms (push incentive) and the low reward for successfully bringing

a new antibiotic to the market by increasing the market exclusivity period (pull incentive).

I estimate the effect of the push and pull incentives on antibiotic innovation in the

short and long term. The analysis follows in two steps. First, I identify the causal effect of

the incentives on a short-term innovation outcome – clinical trial success. Then, I set up a

structural model of pharmaceutical innovation which allows me to consider the long-term

effects of the incentives. Pharmaceutical innovation is a long process, as clinical trials

alone take on average 10 to 12 years. Using the model estimates, I simulate a longer time

period and estimate the effect on new market entries.

In a difference-in-differences setting, I find that the incentives have successfully in-

vigorated the antibiotic pipeline by encouraging more investment in projects eligible for

the pull incentive, increasing their success rates in clinical trials by 21 pp. compared to

projects predicted to be eligible but active before 2012. For the push incentive, I find
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that an additional million of dollars allocated to a firm increases the success probability

of its projects in clinical trials by 1.3 pp., suggesting that antibiotic innovators are facing

financial constraints that can be alleviated by the incentive.

To model the innovation process and estimate the long-term effect of the incentives

on market entry, I adapt a continuous-time dynamic discrete choice model, developed

by Arcidiacono et al. (2016) and first used in the pharmaceutical innovation context by

Khmelnitskaya (2021). In the model, firms make decisions to continue or terminate the

development of an antibiotic following its value, which is driven by the development cost

and expected profit – affected by incentives – and the outcomes of other projects within

the same technological class, which can be informative about the probability of success.

The results reveal that research subsidies are crucial for progress through the early phases

of clinical trials, while the effect of the pull incentive on the expected profit is modest and

affects firms’ decisions only at the final development stage.

New antibiotics can fall into two categories. First, they can be new variations of al-

ready existing molecules, new-in-class innovation. Second, new molecules can establish

their own classes. The latter is the truly breakthrough innovation that brings real progress

in the fight against AMR, while the new in class molecules bring only marginal benefits.

As bacteria might already have developed defense mechanisms against the existing an-

tibiotics, resistance against new in class drugs might emerge much quicker than against a

completely new antibiotic (WHO, 2021).

In my analysis, I find no effect of either incentive on clinical trial success rates of novel

antibiotics. In the structural model, early stage decisions are affected almost exclusively

by the push incentive, meaning that in the current incentive scheme, novel projects could

only be promoted if research subsidies are directed explicitly to those projects.

This paper contributes to the literature on innovation in the pharmaceutical industry.

Existing papers focus mostly on the effects of market size (Acemoglu and Linn, 2004;

Dubois et al., 2015), mergers (Grabowski and Kyle, 2008; Ornaghi, 2009; Haucap et al.,

2019; Cunningham et al., 2021), and recently, on strategic considerations in drug devel-

opment (Rao, 2020; Khmelnitskaya, 2021). Innovation incentives in the pharmaceutical
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industry have so far been studied market-wide for tax credits (McCutchen Jr, 1993)) and

for the cases of incentives targeting rare diseases (Sarpatwari et al., 2018; Yin, 2008) and

neglected diseases (Grace and Kyle, 2009), but not antibiotics. As the degree of innova-

tiveness is particularly relevant for new antibiotics, and an important dimension in my

analysis, this paper contributes also to the strand of literature studying novelty in drug

development (Krieger et al., 2021, 2022).

This paper extends the nascent empirical literature on the economics of antibiotics by

looking at the supply side issues related to AMR. So far, the focus in the area has been on

the demand side, studying the interactions between resistance and physician prescriptions

behavior (Huang and Ullrich, 2021; Huang et al., 2022; Adda, 2020; Ribers and Ullrich,

2022).

This exercise addresses not only the very relevant question of how to bring to the

market new, effective antibiotics but can also guide future policy in pharmaceutical inno-

vation more broadly. With low-hanging fruit seemingly picked in pharmaceutical R&D,

continuing on relying on monopoly profits from successful projects might make the incen-

tives of the industry diverge from the priorities of the consumers. Antibiotics constitute a

useful case study of a market where additional incentives have been introduced, and their

careful evaluation can inform the design of better, future incentive schemes for other drug

classes.

This paper is structured as follows. Section 2 overviews the innovation process in

pharmaceuticals and the existing innovation incentives for antibiotics. Section 3 describes

the dataset used and the definitions of the key variables as well as some summary statistics.

Section 4 presents the reduced form analysis and the structural model with simulations.

Section 5 concludes.

2 Background

Pharmaceuticals are a tightly regulated industry, and, typically, new products must obtain

approval to enter a market. The steps required for approval are similar across the major

national markets. In this paper, I focus on the procedures in the US handled by the Food
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and Drug Administration (FDA). The US market is the largest and typically the first

market on which a new drug is launched.

2.1 Pharmaceutical Innovation

New drugs go through a long process of clinical trials to gain regulatory approval and

enter the market. Pharmaceutical labs identify biological targets and test how different

agents affect them in vitro and in animal trials. From this preclinical stage, the most

promising molecules move on to (human) clinical trials, where the safety and efficacy of

drug candidates are tested in 3 phases. Clinical trials are long and expensive, and their

outcomes are uncertain, with less than 15 percent of molecules entering Phase I being

launched on the market. Based on data from successful clinical trials, a pharmaceutical

company can request approval from a government regulator (e.g., the FDA in the US or

the European Medicine Agency (EMA) in the EU). Upon approval, the pharmaceutical

company is granted marketing exclusivity by the regulator (5 years in the US, in parallel

to any patent protection the molecule might have) and becomes a monopolist for its drug.

After the exclusivity period expires, other manufacturers (subject to a simplified approval

process) are allowed to produce the same molecule and compete with the originator.

2.2 Innovation incentives for antibiotics
2.2.1 Push incentives

Initiatives providing funding for AMR research started to gain momentum in the 2010s.

Simpkin et al. (2017) reviews extensively the main organizations providing push incen-

tives for antibiotic development. The most important funders are the governments of the

United States (through National Institute of Health grants and a specialized agency, the

Biomedical Advanced Research and Development Authority –BARDA, which has had an

antibiotic focus since 2008), the UK and the EU (through the European Commission’s

Directorate-General for Research and Innovation as well as the Innovative Medicines Ini-

tiative’s (IMIs) New Drugs for Bad Bugs (ND4BB) program launched in 2012, which is

a public private partnership with the European Federation of Pharmaceutical Industries

and Associations).
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Since 2016, there have been two important multilateral organizations: the Global An-

tibiotic Research and Development Partnership (GARDP) and Combating Antibiotic Re-

sistant Bacteria Biopharmaceutical Accelerator (CARB-X). In addition to providing push

funding, the GARDP and CARB-X offer expertise and technical assistance to grantees.

Moreover, CARB-X focuses explicitly on antimicrobials targeting high-priority pathogens.

To my knowledge, push incentives for antibiotics have not been evaluated, but the

literature on funding programs in other areas can be informative. Howell (2017) finds

that subsidies at early innovation stages have a large impact on the survival of the funded

projects and allow them to secure more venture capital funding than the control projects.

2.2.2 GAIN Act

The Generating Antibiotic Incentives Now (GAIN) was passed in 2012 as a part of the

2012 Food and Drug Administration Safety and Innovation Act, and it introduced the

Qualified Infectious Disease Product (QIDP) designation, a special status for antibiotics

targeting resistant infections. The QIDP status provides two main benefits: an extended

market exclusivity period and privileges in the approval process.

The GAIN Act defines eligibility for the QIDP designation as follows: “antibacterial

or antifungal drug for human use intended to treat serious or life-threatening infections”.

Drugs meeting these criteria can apply for the QIDP designation at any development

stage. Once granted the designation, the drugs are additionally eligible for the fast track

designation, which means more frequent exchanges with FDA officials, including regarding

the design of the clinical trials, and as a consequence, a decrease in uncertainty over

the result of the regulatory review process. QIDP products are also granted priority

review, meaning that the FDA must give its decision in 6 rather than 10 months at the

approval stage. Finally, successful QIDP products are given an additional 5 years of

market exclusivity.

The literature is largely skeptical about the GAIN Act’s potential to fulfill its role.

Ambrose (2011) is an early critique of the GAIN Act, saying it is insufficient to incentivize

firms to innovate more, proposing further measures (e.g., R&D tax credits, advance mar-

ket commitments, longer exclusivity). Outterson (2013) criticizes the GAIN Act for its
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lack of provisions concerning stewardship and the appropriate use of the new antibiotics.

Outterson et al. (2015) expresses doubts about whether the GAIN Act provides a large

enough incentive for firms to invest in antibiotic development and underlines that there

is no prioritization among the pathogens to be targeted by QIDP products.

On the other hand, the GAIN Act resembles the Orphan Drug Act of 1983, which has

been shown to be largely successful. The Orphan Drug Act targets rare diseases (affecting

less than 200 000 people in the US) and provides 7 additional years of marketing exclusivity

for the rare disease indication. Sarpatwari et al. (2018) find that after passing the Orphan

Drug Act, the number of patents associated with orphan drug indications increased, as

did exclusivity periods of the products with the designation. Yin (2008) shows an increase

in clinical trials associated with rare diseases after the introduction of the Orphan Drug

Act, especially for the more prevalent among rare conditions.

3 Data

3.1 Data Sources
3.1.1 Innovation

To track the development of antibiotics, I use the Pharmaprojects dataset from Citeline.

The data contain information on more than 81 000 pharmaceutical projects starting from

the 1980s and up to the end of 2021. Pharmaprojects tracks their development histories

from the preclinical stage to market launch (or discontinuation if the project is unsuc-

cessful). Additionally, the dataset provides detailed information about the project: its

chemical and biological properties, targeted indications and therapeutic classes, licensing

and marketing information. Importantly for my analysis, the data mention whether the

drug candidate has been granted the QIDP status.

The originator field in the dataset reflects the owner of the project at the end of

2021. As ownership changes can affect innovation outcomes, both as a direct effect of the

transaction and the effect of the size of the firm, it is important to recreate the ownership

history of each project. The dataset contains information on the identities of the previous

owners but not on the timing of ownership changes. However, using Citeline’s Medtrack,
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a comprehensive list of M&A deals in the pharmaceutical industry, I infer the ownership

history of each project and reassign the originator in each year the project was active.

3.1.2 Research grants

To track investments in antibiotic R&D, I use the data collected by the Global AMR R&D

Hub – a partnership of countries, nongovernmental donor organizations and intergovern-

mental organizations to address challenges and to improve coordination and collaboration

in global AMR R&D. I use data only on investments targeted at developing therapeutics,

the second most-funded research area after basic research. For each payment, I know the

funding dates and the identities of the grantee and the funder. I match the funding data

to the innovation dataset by aggregating to the grantee-year level (by starting date of the

investment) and matching to the grantee projects.

Figure 1 presents the development of the push incentives matched to the main dataset

over time. In the early years, 2012-2014, the investments were few and the amounts were

smaller than they were in the subsequent years, with an average of $2 million. Between

2015 and 2019, the number of payments made steadily increased and the total amount

invested ranged between $100 million and $200 million, with an average investment at

approximately $5 million.

3.2 Antibiotics

While the Pharmaprojects dataset distinguishes ‘antibiotics’ and ‘antibacterials’ as sep-

arate therapeutic classes, those designations are not enough to cover either all products

developed to fight infections caused by bacteria or all QIDP projects.

I construct a broader antibiotic class, considering their therapeutic classes and disease

targets. I use keywords such as ‘antibiotic”, ‘antibacterial’, ‘anti-infective’, and ‘infection’

as well as a redacted list of indications of the QIDP projects, and I exclude projects

targeting viral infections and vaccines.

Within antibiotics, I also create dummies for projects targeting specific, resistant

bacteria. To do that, I search the ‘summary’ field of the dataset for the names of resistant
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Figure 1: Push incentive evolution over time

Aggregate statistics from the Global AMR R&D Hub data on
investments targeted at developing new antibiotics, using only
values matched to firms present in the PharmaProjects innova-
tion dataset.

bacteria1, allowing for variations in spelling (e.g., for the bacteria name ‘Escherichia coli’,

I also allow ‘E. coli’)

3.3 Novelty

In antibiotics, it is particularly important that new products represent true novelty and

differ substantially from existing drugs to delay the emergence of resistance. In the case of

drugs, novelty can have two dimensions: structural (chemical structure of the molecule)

and functional (biological effects). Krieger et al. (2022) show that these two properties

largely coincide (similar molecules have similar effects), although important exceptions

exist. For antibiotics, the focus tends to be more on functional novelty, with expert

reviews (e.g., WHO (2021)) paying attention to biological targets and modes of action. I

define my novelty measure in line with this practice and base it on the technology used

by the antibiotic.

To define the drug’s technology, I follow Krieger et al. (2021) and Cunningham et al.
1Following lists of priority pathogens created by the ECDC and FDA
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Figure 2: Novelty definition

Each horizontal line represents a project progressing through development phases over time (horizontal
axis). All projects active to the left of the vertical dashed line (first launch in technology) are considered
novel. Projects that start to the right of the dashed line are not novel.

(2021) and use the string variable mechanism of action. This variable which summarizes

the biological target of the molecule and how it affects it, e.g., protein synthesis inhibitors,

which stop or slow cell growth.

I define a project as novel or not by comparing the mechanism of action (technology)

it uses to the stock of technologies used in successful (launched on the market) projects

at the time I first observe the project. If, when the project starts, its technology has been

used in already launched drugs, it is not novel. Novel projects use technologies that may

have been used in earlier projects but not in those that successfully made it to the market.

Figure 2 illustrates this definition.

Comparing with the evaluation of the novelty of the main new antibiotics approved

since 2017 in WHO (2021), I correctly classify as novel the two products that represent

new chemical classes, vaborbactam and lefamulin.

3.4 Summary statistics
3.4.1 Sample composition

Table 1 presents some descriptive statistics of the project-phase level sample used for

estimation, and the subsamples of antibiotics and antibiotics receiving incentives. Phar-

maceutical innovation is known for its high degree of attrition throughout the development

process, and the table shows that this pattern is true for antibiotics regardless of the in-
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Table 1: Sample composition

Number of observations
Overall Antibiotics Pull incentive Push incentive
N % novel N % novel N % novel N % novel

Preclinical 27 840 70.42 1 147 52.40 98 55.10 149 75.17

Phase 1 4 655 74.59 168 58.93 40 60.00 39 79.49
Phase 2 3 387 76.14 138 55.07 38 60.53 36 80.56
Phase 3 1 910 66.65 94 52.13 34 47.06 14 78.57

Total 37 792 71.25 1547 53.33 210 55.71 238 76.90

centives the projects receive, and projects in Phase 3 constitute a small fraction of the

number of projects active in the Preclinical phase. On average, antibiotics are less novel

than drugs from other classes, and the mean novelty decreases further for antibiotics fur-

ther in clinical trials. The mean novelty of projects eligible for the pull incentive is close

to the class average, while the push incentive seems to be given to more novel projects.

3.4.2 Antibiotic innovators and their portfolios

Figure 3 overviews the portfolios of firms active in antibiotic development. The left side

of the graph shows the average number of antibiotic projects per phase across firms active

in the given phase. On average, a firm innovating in antibiotics has approximately 1.6

antibiotics at the early stage (i.e., preclinical level) and fewer, approximately 1.1 projects,

at any of the three clinical trial stages. This result appears constant across time. The

right side of the graph shows the average firm size (in terms of all projects, in all drug

classes) across firms active in each development phase in antibiotics. The mean firm size

is the smallest among firms active in preclinical development, consistent with the idea of

small biotech firms inventing new molecules but not being able to finance clinical trials.

In preclinical trials, the average firm size has also remained stable in the last 20 years,

while in clinical trials, especially in Phase 3 and since 2012, the average firm size has

steadily decreased, approaching that of firms active in preclinical trials, consistent with

the exit of big pharma from antibiotic development.

Figure 4 compares size and portfolio advancement among all antibiotic innovators and
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Figure 3: Antibiotic pipeline and firm size

Graph on the left: mean number of projects active by development phase
by firm, conditional on being active in the given phase in antibiotic devel-
opment. Graph on the right: mean total number of projects active in all
drug classes by firm, conditional on being active at the in the given phase
in antibiotic development.

those that have been exposed to the push and pull incentives. The exit of large firms

indicated in Figure 3 is once again visible in the top left part of the figure, although not

as pronounced, given that early-stage projects constitute a large share of the antibiotic

projects. Focusing on firms with incentives reveals that firms with the pull incentive

(QIDP) are more than twice as large as the average firm in the market, while firms

receiving the push incentive are closer to the average (with the exception of a large grant

given to GlaxoSmithKline, a big pharma firm, in 2013). This result suggests that the push

funding focuses on small firms that have limited other options for financing their projects.

In the bottom panel of Figure 4, I plot the mean advancement of the firm portfolio, or the

mean project phase, calculated by assigning the value of 0 to projects in the preclinical

phase, 1 to projects in Phase 1, 2 to projects in Phase 2, and 3 to projects in Phase 3. While

the mean project phase was rather stable between 2000 and 2010, a substantial upward

trend can be observed since 2011. This result could be driven by either more projects

advancing into later phases or fewer new projects entering development. The bottom right

part of the graph shows that the portfolio advancement has slowly increased, particularly

for firms with the pull incentive but also for firms that have received push funding at
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any time in the past (push stock in the figure), suggesting that the incentives help firms

advance their projects. Finally, the mean project phase does not change over time for

firms receiving the push incentive at the time of the payment (push flow), confirming that

the profile of the firm receiving the push incentive has not changed over time.

Figure 4: Portfolios of firms active in antibiotic development by incentive type

3.4.3 Launches

Figure 5 plots the number of antibiotic launches per year. Between 2000 and 2011, the

number of launches annually remained stable, and the market saw 2-9 antibiotic launches

per year. Striking are the drop to 1 in 2012 and the subsequent jumps to 7 and 12 in 2013

and 2014, respectively. This result could be partially explained by the firms anticipating

the passing of the GAIN Act in 2012 and delaying the launch of their molecules to benefit

from the QIDP designation. Interestingly, the number of launches remains at a higher

level between 2014 and 2020, ranging from 5 to 11.

Figure 6 plots launches by their exact date and the incentive category. The jump in

launches in 2013-14 did not translate into QIDP launches, as only one product with the
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Figure 5: Total antibiotic launches by year

designation was launched in 2013 and 3 in 2014. More than half of the QIDP launches

occurred in 2018 and later, more than 6 years after the GAIN Act was implemented.

Only 3 projects that were exposed to a push incentive during their development have

been launched thus far.

Figure 6: Antibiotic launches by incentive type.

Dashed line indicates the year the GAIN Act was passed.

4 Analysis

4.1 Overview

Due to the length of the pharmaceutical R&D process, the effects of innovation incentives

could materialize decades after their introduction. In this section, I propose 2 approaches

to evaluate the effectiveness of innovation incentives in antibiotics in the relatively short

term, that is, the 10 years that passed between their introduction and the end of my

dataset.
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First, using a reduced form approach, I estimate the incentive effect on a short-term

outcome, the clinical trial success rate. Second, by modeling the innovation process and

including the incentives in the model, I estimate the model primitives using the available

data and simulate additional time periods to see the long-term effect on market entries.

Both parts of the empirical analysis are built around a simple decision rule of a phar-

maceutical innovator, illustrated in Equation (1):

psuccess × Π > c (1)

The firm will invest in a drug candidate only if the expected profit (discounted lifetime

profit Π weighted by probability of completing clinical trials with success and gaining

approval psuccess) is higher than development cost c. I assume that firms rank drug

candidates by the difference, psuccess × Π − c, and invest first in those with the highest

difference values. The pull incentives affect the LHS of Equation (1), as they increase

profit, while the push incentives decrease the cost of innovation.

4.2 Short-term effects: reduced-form evidence

With only 10 years of data after incentives were introduced, a reduced form analysis

must rely on a short-term outcome. A useful feature of the long process of developing

a new drug is that it is divided into distinct, standard phases, at the end of which the

innovator must decide whether to invest further in the drug candidate or to terminate it.

Defining phase success as the drug candidate advancing into a subsequent phase, I obtain

an intermediary, project-level outcome.

Typically, the success of a drug candidate in a given phase (i.e., the project advancing

to a subsequent phase), is the product of two factors interacting. First is the objective

outcome of the phase (e.g., the result of a clinical trial), which informs the innovator

about the project quality (safety or efficacy). Second, having learned the outcome, the

innovator makes a decision following the rule in Equation (1).

4.2.1 Estimating the pull incentive effect

The GAIN Act is a policy change, and I estimate its impact in a difference-in-difference

setting. First, I distinguish the treated drug candidates from the controls. The treated
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group consists of QIDP-eligible drug candidates. The QIDP designation gives a project

privileges throughout the clinical trials (see Section 2.2.2 for details), and typically clinical

trials are designed for a specific indication (which is an important determinant of QIDP

eligibility). Therefore, I assume that after 2012, for projects in clinical trials, the QIDP

eligibility is equivalent to the revealed QIDP status, as the firm has no reason to delay

applying for the incentive. However, the eligibility of preclinical projects, as well as those

that ended before 2012, is not known. Given the clear eligibility criterion and the breadth

of my data, I attempt to predict QIDP eligibility for this subset of projects.

Using the text descriptions of the projects in Pharmaprojects in fields summary, drug

disease, drug country, Phase 1, Phase 2, and Phase 3, I construct a set of variables

related to the QIDP eligibility criterion: “antibacterial or antifungal drug for human use

intended to treat serious or life-threatening infections”, i.e., bacteria targeted, indications,

and infection severity (details in Table 6). With this variable set, I train a random forest

classifier on the sample of antibiotic projects that were in clinical trials after 2012, that

is, the projects for which the QIDP status is known. Next, I use the model to predict the

out-of-sample QIDP eligibility for the antibiotic projects that ended before 2012 or were

active after 2012 but did not reach clinical trials. Figure 7 visualizes how the in-sample

and out-of-sample groups are constructed.

The random forest classifier performs quite well for the in-sample groups while it still

predicts that some out-of-sample projects are QIDP-eligible. Of the 108 QIDP projects

active in clinical trials after 2012, the model correctly predicts 80 as eligible and predicts

only 6 false positives (projects predicted to be eligible but not QIDP in the data).

Out-of-sample, I find 124 more projects that are eligible, including 69 that ended

before 2012. While this number is low, compared to the total of almost 1300 projects in

my antibiotic sample, it is in line with the reasoning that the incentives were introduced

in response to the lack of innovation in the area.

The treated group consists of the QIDP projects and the projects predicted to be

eligible. However, some of the projects that obtained the QIDP status started before

2012. As the fact that they obtained the QIDP status relies on them being active after
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2012 and hence successful before that year, I drop all the observations related to these

projects for the development phases that started before 2012.

The credibility of the estimate relies on the validity of the parallel trends assumption.

In the current context, given the low numbers of observations in the years before the

GAIN Act, the statistical tests that could support parallel trends would have very low

power. Figure 8 plots the success rates of the QIDP projects and other antibiotics over

time. While the outcomes of the QIDP projects are more volatile, they do not seem to

exhibit a trend diverging from the other antibiotics.

4.2.2 Estimating the push incentive effect

The push incentive, is a series of payments made to the project’s developer, making its

effect more difficult to capture. First, funding is not assigned randomly; it could be that

firms with the best, most promising projects receive it or, conversely, that firms innovating

in high-priority but also high-risk areas receive it. The received funding could be invested

in very early stage research, and its effects might only become apparent in the future. For

Figure 7: Projects used for predictions.

Each horizontal line represents a project progressing through development phases over time (horizontal
axis). The top projects, marked as ‘QIDP status unknown’ are the out-of-sample projects. ‘QIDP’ and
‘Non QIDP’ projects in the bottom half of the graph are the sample used to generate the predictions.
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Figure 8: Trends in phase success rates

(a) Raw values (b) Net of the effect of controls (novelty, firm
size, ownership change, bacteria targeted, phase
fixed effects, project age) and the effect of the
push incentive

projects in clinical trials, i.e., those that have already been selected by the firm, additional

financial flows can have an effect only through alleviating the firm’s budget constraint.

At the end of a clinical trial, the firm receives a signal about the project’s quality. If

the signal is bad, the project is terminated regardless of the incentives it received, as it

will not obtain regulatory approval. If the signal is good, the firm can decide to continue

development or terminate. Assuming that the funders cannot predict the trial outcome,

the funding flows received by a firm during a clinical trial do not suffer from the selection

issue suggested above, and the incentive effect would work through affecting the decision

rule in Equation (1), for example, by alleviating financial constraints the firm might be

facing.

I focus on funding flows that the project’s originator received while the project in a

development phase and their effect on the outcome in this phase. As the funding received

during this period, as well as the project’s quality, could be affected by past funding, I

control for the stock of push funding the firm obtained previously. I also add a dummy

controlling for the characteristics that could differentiate firms that have ever received

push funding from other firms and that thus affect their projects’ success rates.

The push payments are matched at the firm level and only to the antibiotic projects of

the firm. I do not match the funding to specific projects, as the funds are often disbursed

for broader programs and it would not be possible to identify which molecules exactly are
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part of those. Moreover, to the extent that the push incentive relaxes the firm’s budget

constraint, it can also have spillover effects on projects to which it is not directly aimed.

4.2.3 Framework

The descriptive analysis suggests that the introduction of the innovation incentives coin-

cides with changes in the outcomes of antibiotic R&D projects. To obtain more precise and

richer insight into these changes, I turn to a regression analysis using a linear probability

model.

My dataset is at the project i - phase d level, meaning that I observe each project

only once per development phase (d ∈ {0, 1, 2, 3, 4}: preclinical and the three phases of

clinical trials and approval), and only in the development phases they enter. Success, Yid,

is equal to one each time a project is observed at a later phase at some point in the future

and zero for projects discontinued after Phase d.

I measure the effect of the pull incentive in a difference-in-difference type of framework.

Given that my prediction model finds pre-2012 projects that would have qualified for the

QIDP designation, I can control for the characteristics of the QIDP projects that poten-

tially affect their success rates, (Pulli, equal to 1 for projects with the QIDP designation

in the data and projects predicted to be QIDP eligible), and compare their outcomes with

and without the policy or before and after 2012 (Post2012id).

To control for the differences between the firms that receive push funding and those

that do not, I introduce the dummy Pushany
id , which is equal to one for project i belonging

to a firm that received any push funding by the time project i enters Phase d. To account

for the possible long-term effects of past push incentives, I use the stock of push funding

accumulated by the developer firm until the time project i entered Phase d, Pushstock
id .

Finally, Pushflow
id is the sum of the push funding received by the firm during the period

project i was in Phase d.
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My estimating equation takes the form:

Yid =α1Post2012id × Pulli + α2Pulli + α3Post2012id

+ β1Pushflow
id + β2Pushstock

id + β3Pushany
id (2)

+ γXid + δd + εid

where the coefficient of interest for the pull and push incentives are α1 and β1, respectively.

The estimating equation also contains a set of controls, Xid: vintage (project start

year) fixed effects and project age, whether the project has been exposed to the merger

and acquisition activity of the firm developing it during Phase d, fixed effects for bacteria

targeted by the project, novelty and total number of projects in the same technology prior

to project d’s starting year. δd is a vector of the phase fixed effects, and εid is the error

term.

As incentivizing investment in novel projects is particularly important in the case of

antibiotics, I estimate a version of Equation (2) augmented with the interaction of the two

terms of interest with novelty, using a measure based on market launches in the project’s

technological class, as described in Section 3.3.

4.2.4 Results

Table 2 presents the estimates of selected coefficients from the estimation of Equation (2)

separately for projects in preclinical development and in clinical trials, with and without

the push dummy and with and without interactions of the main variables of interest:

QIDP projects after 2012 and push flows.

The results suggest that the pull incentive had a positive effect on the eligible projects,

both at the preclinical stage and in clinical trials. The preclinical success rate of QIDP-

eligible projects after the introduction of the GAIN Act in 2012 increased by 31.5 percent-

age points overall, and this change was mainly driven by novel projects advancing into

clinical development. At the clinical stage, trials of QIDP projects that started after the

introduction of the pull incentive are 21 percentage points more successful than are the

trials of the projects that were predicted to be eligible for the incentive but ended before

2012. In contrast to the preclinical stage, the pull incentive appears to have no effect for
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novel projects in clinical trials.

The estimates of the effect of the push incentive are close to zero and mostly insignif-

icant in the baseline specifications in Columns (3)-(4) of Table 2. The negative effect in

Column (3) disappears after the inclusion of the push dummy in Column (4), suggesting

that firms that received push funding engage in less successful or more risky projects on

average.

Adding the interaction of novelty with the push flow, we can see in Column (8) that

$1M of financing received by the originator of a project in clinical trials increases the

probability of success of this project by 1.3 percentage points, with no significantly differ-

ent effect for novel projects, and the point estimate pointing at no effect at all for novel

projects. Indeed, in Table 11, which presents the estimates on a sample restricted to

decisions made until 2018, the effect on the interaction of push flows with novelty almost

exactly cancels out the baseline effect of the push incentive.

Table 2: Phase success probability

(1) (2) (3) (4) (5) (6)
VARIABLES Preclinical Preclinical Trials Trials Preclinical Trials

Pull -0.0741 -0.0742 0.0031 -0.0004 -0.0049 -0.1335
(0.0540) (0.0540) (0.1128) (0.1127) (0.0808) (0.1257)

Pull × Post 2012 0.3146*** 0.3151*** 0.2021 0.2119* 0.0669 0.2322
(0.1007) (0.1000) (0.1232) (0.1230) (0.1338) (0.1507)

Pull × Post 2012 × New technology 0.5015*** -0.1353
(0.1806) (0.2322)

Push flow ($M) 0.0023 0.0024 -0.0059** 0.0018 0.0123** 0.0133**
(0.0031) (0.0030) (0.0027) (0.0056) (0.0062) (0.0068)

Push flow × New technology -0.0110 -0.0135
(0.0069) (0.0088)

Push stock ($M) -0.0022** -0.0007 -0.0007
(0.0009) (0.0006) (0.0006)

Push (dummy) -0.0054 -0.1245*** -0.0058 -0.1270***
(0.0418) (0.0323) (0.0442) (0.0297)

Observations 27,794 27,794 9,894 9,894 27,794 9,894
R-squared 0.0448 0.0448 0.0860 0.0866 0.0455 0.0873
Standard errors in parentheses, clustered at the originator level. Linear probability model of phase success

(advancement to a subsequent phase), including as controls: novelty, antibiotics dummy, new chemical entity
dummy, firm size (number of projects in development), acquisition dummy, number of projects in technology,
whether the project targets any of the bacteria listed by FDA, or ECDC, or WHO priority pathogens, phase fixed
effects, vintage fixed effects, phase start year fixed effect, age of the project.

*** p<0.01, ** p<0.05, * p<0.1

As the push flows are measured in millions of dollars, comparing the coefficients on

the push and pull incentive can provide an estimate of the value of the pull incentive to
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the innovators. The point estimate of the effect of the pull incentive is 17.46 times higher

than the point estimate on the push incentive in clinical trials, suggesting that for the

firms, on average, the present value of the 5 years exclusivity extension is approximately

$17.46M for projects in clinical trials.

Depending on the discount factor and on when the firm expects to benefit from the

pull incentive, this net present value of $17.46M can correspond to different annual flows.

Figure 9 plots the estimates of these flows according to the function:

y =
17.46∑5

t=1(1− ρ)t−1 × (1− ρ)T

Where y is the annual profit flow over the 5 years of the QIDP exclusivity extension,

ρ is the discount factor and T is the time frame at which the firm expects to start

accruing the benefits from the pull incentive. For example, T = 10 could mean that the

project is expected to be launched on the market in 5 years and will benefit for 5 years

from the New Chemical Exclusivity before the QIDP exclusivity extension. In the T = 10

example, the NPV calculation suggests that the annual flow from the pull incentive would

be approximately $6.45M, or $32.25M in total, assuming 5% discount factor; or $12.23M

($61.15M) with a 10% discount factor.

Figure 9: Expected annual flows from the pull incentive
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4.3 Dynamic model of pharmaceutical innovation

The reduced form evidence is informative on the changes in dynamics in the antibiotic

pipeline after the introduction of the innovation incentives. However, it is only suggestive

of how these changes will reflect on new market entries. Modeling the innovation process

allows me to simulate a longer time period (then the period observed in the data) and

provide a fuller picture of the effect of the incentives, including the most relevant outcome

– market entries of new antibiotics. Including the effect of the incentives in the model will

allow me to consider different incentive schemes in counterfactual simulations. Comparing

the current incentive schemes to a scenario without incentives will provide an estimate

of their effect. Moreover, experimenting with more generous incentives can indicate how

much more should be invested to achieve an effect of a given magnitude.

The intuition behind the model is as follows: Through clinical trials, the originator

learns about the value of molecule i by observing its outcomes and by observing the

outcomes of other molecules using similar technologies that are at least as advanced

in the trials as i. Table 12 provides some suggestive evidence for this process. When

other similar molecules are observed to be discontinued by projects that are at least as

advanced projects using the same technology, the molecule has a higher probability of

being discontinued in the subsequent year.

In the case of antibiotics targeting resistant bacteria, competition on the product

market can be assumed a less important factor, as effective management of antimicrobial

resistance requires that multiple products be available and used. Therefore, the outcomes

of similar molecules contribute more to the understanding of molecule i’s type than to its

expected market size.

At each point in time in the trials, i’s originator observes the molecule’s outcomes

and decides whether to continue development or discontinue i. Continuing the trials is

associated with the flow cost cid which depends on the trial phase (later phases require

more trial participants and higher costs).

The push and pull innovation incentives affect this process differently. The pull in-

centives simply increase the value of the molecule (conditional on successfully completing
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development), while the push incentives effectively decrease the cost of conducting re-

search at both the preclinical and clinical stages.

4.3.1 Setup

I use a continuous time dynamic discrete choice model developed in Arcidiacono et al.

(2016) and Blevins (2014) and adapted to the pharmaceutical industry in Khmelnitskaya

(2021) to model innovation in antibiotics. This choice has a number of particularly at-

tractive features for this setting. First, the intervals between decisions are not fixed: the

length of clinical trials may differ between drugs, and a particularly bad outcome can end

a trial at any point in time. Second, the decisions of the different players interact, either

because the expectations on the competitive environment on the product market change

(a smaller concern for antibiotics) or because the outcomes of similar molecules affect the

firm’s estimate of its product’s success probability. The continuous time setting allows

me to incorporate the complex dynamics of the multi-agent setting in a computationally

feasible way.

I consider an infinite horizon game in continuous time. Firms decide whether to

invest in the development of molecules indexed by i = 1, ..., N . Each firm can own

multiple molecules, but the decisions are independent across molecules once they enter

development. I model only decisions for molecules already in development, and the entry

into clinical trials, while allowed to affect the firm decision-making is kept exogenous in

the model.

Throughout development, firms receive information about their molecules through the

clinical trials outcomes (unobserved by the econometrician) and through the outcomes of

other molecules that are technologically close. Firms can decide to either advance the

project into the next phase (j = 1) or discontinue the molecule (j = 0). There are

three phases of clinical trials indexed by d, and profits are realized only after completing

Phase 3 and obtaining regulatory approval. State variable sk summarizes the state of the

R&D pipeline in the i’s technological class in a vector of size 4 containing the number of

molecules at each development phase, i.e. the clinical trials d = {1, 2, 3} and approval

stage d = 4: sk = (s1k, s
2
k, s

3
k, s

4
k) for k ∈ 1, 2, ..., K. Assuming a maximum number of
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molecules at a given development stage at the same time (limited, e.g., by the finite

number of hospitals and amount of human capital available to organize clinical trials),

the state space is finite.

The definition of the state vector is important, as next to the phase and incentives, it

will define the molecule’s value. The current definition of the state vector is restrictive,

but it captures the fact that more projects being developed concurrently in a technological

class means more information about this technology for the innovators. Additionally, it

allows the quality of this information to vary according to the distribution of the projects

across development phases.

In each clinical trial phase, the decisions for molecule i in state k occur at random times

according to a Poisson process with rate λd (phase-specific move arrival rate). Function

l(i, j, k) gives the new state conditional on the owner of project i taking action j in state k.

σidjk denotes the conditional choice probability of project i in Phase d making a decision

j in state k.

The value function of molecule i in Phase d in state k, for a small increment of time,

h, for d = {1, 2, 3} (clinical trials) follows:

Vidk =
1

1 + ρh

−cidh+
∑

d′=1,2,3

qd′Vidk′
d′︸ ︷︷ ︸

nature
arrival

+
∑
m 6=i

λd(m)h
∑
j

σmd(m)jkVid,l(m,j,k)︸ ︷︷ ︸
m 6=i moves

+ (3)

λdhEmax(Vi,d+1,l(i,1,k) + εidk, 0)︸ ︷︷ ︸
i moves

+

1−
∑

d′=1,2,3

qd′h−
∑
m 6=i

λd(m)h− λdh

Vidk︸ ︷︷ ︸
no change

+o(h)



Analyzing the value function term by term:

1. At each point in time, to continue development, the firm must pay the phase-specific

flow cost cid. Flow cost cid is a function of molecule i’s current Phase d, and current

push incentive flows pushid:

cid = cd − βpush
d pushid
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2. With probability qd′ , there is an exogenous arrival of a new project into development

in phase d′, pushing the industry into state k′
d′ (state k with one more molecule in

Phase d′)

3. Each one of the other projects, m 6= i, can move with probability λd(m), where d(m)

denotes the phase of project m

4. With probability λd, i will move. The firm can either advance i into the next Phase

d + 1 or discontinue the project. A payoff is realized only after approval (d = 4)

and depends on the pull incentive QIDPi.

5. With probability

(
1−

∑
d′=1,2,3

qd′h−
∑
m6=i

λd(m)h− λdh

)
, there is no change and the

industry remains in state k

As h → 0:

Vidk =

−cid +
∑

d′=1,2,3

qd′Vidk′
d′
+
∑
m 6=i

λd(m)

∑
j

σmd(m)jkVid,l(m,j,k) + λdEmax(Vi,d+1,l(i,1,k) + εidk, 0)

ρ+
∑

d′=1,2,3

qd′ +
∑
m 6=i

λd(m) + λd

(4)

For d = 4 (approval):

Vi4 =
−c4 + pπi

ρ+ 1
(5)

As approval probability p is exogenous, and if given approval, the firm definitely enters

the market and gains profit πi. The expected profit depends on whether the project

benefits from the QIDP designation QIDPi = 1:

πi =

{
πbase if QIDPi = 0

πbase + πQIDP if QIDPi = 1

My model deviates from that of Khmelnitskaya (2021) in a number of ways. I abstract

from product-market competition, which is less of a concern in this market, and do not

model strategic considerations in development decisions (although, if relevant, they will

be captured by the changes across states k), in favor of including the innovation incentives

in the model. I focus on one drug class, antibiotics, and use a more granular, technology-

specific, state variable, which contains more information about the project’s probability

of success.
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4.3.2 Estimation

The estimation procedure follows in two steps. First, I estimate the move arrival rates λd

(collected in vector λ = [λ1, λ2, λ3]); exogenous arrival probabilities, q = [q1, q2, q3]; and

conditional choice probabilities, σidjk from the data. In the second step, fixing λ, q and

σidjk, I estimate the model primitives θ = {βpush
2 , βpush

3 , πbase, πQIDP}.

Step 1

λ and qd are estimated directly from the R&D data. The move arrival rates are the inverse

of the average phase duration in years. The exogenous arrival rate is the mean ratio of

the exogenous arrivals per year to the number of active technologies.

The conditional choice probabilities σidjk are estimated with a logit of a polynomial

function of state variables using the decisions observed in the data, yielding σ̃idjk.

To obtain point estimates of the effect of the push (pull) incentive on cost (profit), I

set the Phase 2 and 3 constants in the cost function, c2 and c3, and the approval cost c4,

to the values estimated by Sertkaya et al. (2014) for antimicrobials, with 30% overhead,

following Outterson (2021).

Step 2

The second step of the estimation procedure relies on rewriting the V terms as functions

of the conditional choice probabilities following Hotz and Miller (1993).

The firm’s decision at the end of a clinical trial is the solution to the term Emax(Vi,d+1,l(i,1,k)+

εidk, 0) in the value function. Section B.2 of the Appendix presents the linear rep-

resentation of the value function, showing that for each phase, the vector of values

Vid across all states k can be expressed in terms of the model parameters and the

Emax(Vi,d+1,l(i,1,k) + εidk, 0) terms. Assume that εidk is i.i.d. Type I extreme value. The

scaling parameter of εidk’s distribution will affect the degree to which the random shock

affects the decisions and can be estimated with the other primitives. Normalizing the

scaling parameter to 1, I can replace the Emax term by its closed form expression:
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Emax(Vi,d+1,l(i,1,k) + εidk, 0) = ln(1 + eVi,d+1,l(i,1,k)) + ν (6)

where ν is the Euler constant.

The probability of advancing from Phase d in state k (j = 1) is then:

σid1k = Pr(Vi,d+1,l(i,1,k) + εidk > 0)

=
eVi,d+1,l(i,1,k)

1 + eVi,d+1,l(i,1,k)
(7)

Inverting, I obtain:

Vi,d+1,l(i,1,k) = ln(
σid1k

1− σid1k

) (8)

Obtaining:

Emax(Vi,d+1,l(i,1,k) + εidk, 0) = ln(1 +
1

1− σid1k

) + ν (9)

Using Equation (8) and the σ̃idjk estimates, I can replace the Vidk’s on the RHS of

Equation (4) with appropriate values, rewriting Vidk as a function of the model primitives

and parameters estimated in Step 1. Then, I can recover the structural conditional choice

probabilities (CCP), σ̃idjk(θ, q, λ, σ̃) using Equation (7):

σ̃id1k(θ, q, λ, σ̃) =
eVi,d+1,l(i,1,k)

1 + eVi,d+1,l(i,1,k)

For the set of decisions observed in the data, I can write then the likelihood

lid(θ, q, λ, σ̃) =
1{j(i, d, k) = 0}+ 1{j(i, d, k) = 1} × eVi,d+1,l(i,1,k)

1 + eVi,d+1,l(i,1,k)

where j(i, d, k) is the decision observed in the data made for project i in phase d in state

k. Aggregating over decisions observed in the data, I can write the pseudo log-likelihood

function:

L(θ, q, λ, σ̃) =
∑
i,d

ln (lid(θ, q, λ, σ̃))

Section B.4 presents details on the construction of the value functions used in estima-

tion.
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4.3.3 Results

Table 3 presents the estimation results. With the standard errors calculated from 400

bootstrap samples, the estimates are precisely estimated.

The effects of the push incentive are very close in magnitude to the average annual costs

of clinical trials captured by the constants in the cost function ($8.5M vs the $10.94M

constant in Phase 2, c2, and $18.5M vs $27.26M in Phase 3, c3), suggesting that the

benefits of the push incentive are greater than the value of the transfer (on average

approximately $3.5M) and significantly reduce the role of cost considerations in the firm’s

decision problem, especially in Phase 1.

The profit estimates confirm that antibiotics have a very low expected profit, with

just under $300M in discounted lifetime profits at the baseline. The results suggest

that a QIDP designation gives the firm very little additional benefit, consistent with the

critiques expressed in the literature (Darrow and Kesselheim, 2020). The estimate of

πQIDP is however a lower bound on the incentive effect if the QIDP-eligible projects are

less profitable than the rest of the antibiotics.

The estimation results suggest a large effect of the push incentives and a modest effect

of the pull incentive. In the next section, I simulate a longer time period and different

counterfactual scenarios to obtain a more nuanced view of the incentive effects on the

progress of projects throughout the development phases.

Table 3: Results from Maximum Likelihood estimation of the structural model (in $10M)

Estimate Standard Error

Push, Phase 2 (βpush
2 ) 0.850090 0.0829929

Push, Phase 3 (βpush
3 ) 1.850127 0.0918365

Base profit (πbase) 29.813637 0.0100535
Profit QIDP (πQIDP ) 1.138357 0.0481879
Standard errors obtained by bootstrap of the ML estimate of the
dynamic model with 400 replications

4.3.4 Counterfactuals

The counterfactual simulations are guided by Equation (3). Starting with a sample of

projects from the beginning of 2012, for each technological class, I allow one change to
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occur daily and simulate 20 years of data.

In the simulations, I use the parameters used in the estimation, the estimated coeffi-

cients and the values of projects at different states obtained by solving the model through

value function iteration. The firm’s decision is guided by these values (and a random

shock), which depend on the project incentives.

Table 4 compares outcomes observed in the data to those from 100 simulations of the

first 10 years at the equilibrium (baseline). The current version of the model underesti-

mates the success rates and numbers of projects in the pipeline. The low success rates can

be explained by the fact that in the model, firms are making decisions mostly following

cost and profit considerations (and the low estimated profit explains their unwillingness

to continue development), while in reality some firms might intrinsically value having

projects in clinical development. This mismatch motivates including more observed firm

heterogeneity in future versions of the model, and better accounting for unobserved het-

erogeneity by estimating the scaling parameter of the εidk. The underestimated number

of active projects is on the one hand the direct effect of low success rates (especially for

projects at higher phases of development), but it also suggests that using the mean rate

of the observed exogenous entry might not be enough and it could be possible to allow it

to evolve over time albeit at substantial computational cost.

Even if the simulation results do not exactly match the data, it is still useful to compare

different counterfactual scenarios to see how, in broad terms, the incentives affect firm

decision making and the antibiotic pipeline. In the simulations I can manipulate three

(sets of) parameters that affect both the incentives and the outcomes observed: the pull

incentive, the probability of receiving push incentive, and exogenous entries.

While entry into development is not modeled, the number and type of projects present

in the pipeline affect the outcomes and might be affected by the incentives. To this end,

I separately model the entry of the QIDP and other projects using the mean values from

the period after 2012 (i.e., with the incentive present) and attribute the entry rates of

projects exposed to the two incentives to the incentive or not, depending on the scenario.

To estimate and solve the model, I could rely only on the technological classes already
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Table 4: Counterfactual results compared to data

Data Model

Phase 1
N 259 141.56
Success rate 0.598 0.098

Phase 2
N 202 108.92
Success rate 0.495 0.052

Phase 3
N 116 49.03
Success rate 0.560 0.637
Numbers of decisions observed and suc-
cess rates (conditional on taking a de-
cision in the given phase). In the data
– column Data; and means from 100
simulations of a 10 year period at the
equilibrium – column Model.

present on the market. However, bringing the simulation results for the whole class of

antibiotics closer to reality requires modeling the entry of new technologies. I follow the

same approach as for entries into the development of projects in existing classes and use

the observed rates for QIDP and non-QIDP projects.

The push incentive is decided when the firm makes a decision. All projects have the

same probability of receiving the push incentive, following the observed values for the first

10 years of the simulation and fixed at the 2021 level after that period.

I simulate the data at the baseline (incentives as observed) and counterfactual sce-

narios by removing the incentives and reducing exogenous entry as well as in one of the

counterfactuals without incentives.

Table 5 presents the mean numbers of decisions made and the mean success rates

(share of projects advancing to the next phase) per phase from 100 simulations of each of

the scenarios. It also shows the number of QIDP projects arriving in approval over the

simulated 20 years. Column (1) is the baseline scenario where the parameters associated

with the incentives are kept at the levels observed between 2012 and 2021. Figure 10

plots relative changes in the number of market entries over the 20 simulated years by

counterfactual scenario.
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The first comparison can be made between the baseline and a scenario with no in-

centives at all, to estimate the effect of current incentive scheme. To the extent that

incentives can affect entry, the comparison with no incentives and no entry of incentivized

projects at all (Column (2)) will give the upper bound of the effect, and the comparison

with a scenario where the incentives are removed but the entry rates remain unchanged

(Column (3)), the lower bound of the effect. The effect on success rates in Phases 1 and 2

is almost the same in both cases, and they drop to values very close to 0. Success rates in

Phase 3 are also similar in columns (2) and (3) and close to the baseline value, suggesting

the current incentives do not affect decision making at the later stages of development.

Due to the lower success rates in earlier phases and, to a lesser extent, less entry in Col-

umn (2), there are much fewer projects in Phase 3, which will automatically translate into

fewer projects entering the market. The model predicts that the current incentive scheme

will increase the number of market entries by 20-25% overall, and, at the upper bound,

double the number of QIDP products entering the market.

The model allows me also to isolate the effect of the incentives, by removing them

one by one while holding everything else constant. In Column (4) the pull incentive

is removed and in Column (5), the push incentive. In both cases the entry rates remain

unchanged, the estimates providing the lower bound of the effect of the relevant incentive.

Comparing Columns (1) and (4), the effect of the pull incentive turns out to be marginal,

with a slightly lower number of projects in Phase 3 and a 2 pp. lower success rate when the

incentive is removed. Removing the push incentive, on the other hand, has much stronger

effect across all the outcomes except the Phase 3 success rate. Figure 10 suggests that

the impact of the push funding in the current incentive scheme is twice as large as the

impact of the pull incentive.

The last two columns of Table 5 consider scenarios with much higher incentives. Col-

umn (6) presents the results from a simulation in which the push incentive was doubled

(at the extensive margin, by doubling the probabilities of receiving the subsidy). The re-

sulting Phase 1 and 2 success rates are also doubled, and the number of projects arriving

at the decision point in the last phase increases by approximately 13%.
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Table 5: Counterfactual results

Scenario
(1) (2) (3) (4) (5) (6) (7)

Baseline None (1) None (2) No pull No push Double push High pull

Push X X ×2 X
Pull X X X $100M
Entry X X X X X X

Phase 1
N 287.42 210.92 284.60 290.10 285.83 295.39 297.40
Success rate 0.128 0.029 0.033 0.124 0.033 0.214 0.142

Phase 2
N 186.32 147.68 165.25 186.06 164.70 207.42 193.46
Success rate 0.077 0.008 0.007 0.073 0.007 0.157 0.237

Phase 3
N 90.36 70.23 75.88 87.70 77.21 102.71 118.33
Success rate 0.614 0.579 0.585 0.591 0.616 0.629 0.737

QIDP in approval 11.12 5.11 7.26 7.59 9.19 12.63 42.47
Table presents the mean number of decisions observed and mean success rates in each development phase from
100 simulations (per scenario) of 20 years of daily events in the antibiotic R&D pipeline, starting from the set of
projects active on January 1st 2012 and allowing for entry of new projects into active technological classes and
for entry of new classes into development. In column (2) the entry of QIDP projects and projects that received
the push incentive in the past is suppressed. In column (6) the number of projects receiving the push incentive is
doubled and in column (7) the value of the pull incentive is increased to $100M (from the estimated $11.4M)

Figure 10: Relative change in market entries by counterfactual scenario

In Column (7), the pull incentive is increased to $100M, a 9-fold increase from the

estimated effect. With such a substantial increase, there is an effect on early stage success

rates, as well as an increase in Phase 3 success rate, which translates into a 57% increase
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in market entries, mostly driven by QIDP projects.

4.3.5 Discussion

The counterfactual results suggest that over the course of 20 years from its beginning,

the current incentive scheme can be expected to be successful at increasing the number

of market entries of new antibiotics. The pull incentive in its current form has almost no

impact on the earlier stages other than potentially attracting more projects into develop-

ment. This fact suggests that the bulk of its effect might work through firms’ repurposing

of projects already in development to fit the eligibility criteria. Depending on the advance-

ment of these projects, the pull incentive might affect very few novel projects. To develop

new and novel antibiotics that need to progress through all the clinical trial phases, push

incentives are indispensable, and pull incentive can play a role only if it is substantially

increased.

While the effect of the pull incentive in the counterfactuals appears much smaller

than the point estimate obtained in the reduced form analysis, it should be noted that

the reduced form estimates are noisy. Additionally, as shown in Table 7, decomposing

the difference-in-differences results by development phase shows that the effect of the pull

incentive is the most prominent in Phase 3 and much more ambiguous for the earlier

phases.

5 Conclusion

This paper analyzes the performance of innovation incentives in an underserved pharma-

ceutical class, antibiotics. The high clinical need for new antibiotics coincides with a small

market size because of a biological process – antimicrobial resistance. New therapies are

needed to treat resistant infections, but to limit the emergence of resistant bacteria, new

antibiotic have to be reserved only for the cases where they are strictly necessary.

Two incentive types have been introduced since 2012 to make innovation in antibiotics

more attractive: research subsidies, or push incentives, and an extension of the market

exclusivity period, constituting a form of a pull incentive.

Estimating the effect of these incentives on the main outcome of interest, new prod-
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uct launches, is challenging due to the relatively short time that has passed since their

introduction relative to the long innovation process in this industry. This paper takes two

approaches to offer the broadest possible view on this issue.

First, in a reduced-form setting, I show that the incentives have been successful at

invigorating the antibiotic pipeline by focusing on an intermediary outcome: clinical trial

success. The pull incentive appears to have encouraged firms to invest more in the eligible

projects, and the push incentives have reduced the financial constraints of the innovators.

On the other hand, neither incentive has had any effect on novel projects.

Second, I set up a structural model to simulate the effects of the incentives that will

be realized in the future and consider counterfactual incentive schemes. I find that the

push incentive plays an important role in helping projects advance through Phases 1 and

2 of clinical trials, while the effect of the pull incentive is only pronounced in Phase 3. In

comparison to a counterfactual of no incentive, the current situation has produced large

effects at every development stage, especially if the incentives attract new projects into

development.

The results, while informative, show the importance of incorporating firm heterogene-

ity in the model in the future versions of the paper. The analysis could also be made

richer by including novelty explicitly as a characteristic of a technological class. This pa-

per contributes to the nascent literature on the supply-side economics of antibiotics with

many important avenues for future research, such as understanding the drivers of entries

and exists of innovators in antibiotics, treated as exogenous in this paper.
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A Reduced form
A.1 Details on estimation

Table 6: Variables used in the QIDP eligibility prediction (variable name is the keyword
unless otherwise stated)

Variable Description Field
Bacteria
escherichiacoli

Bacteria names with spelling variations Summary

acinetobacter
aspergillus
streptococcuspyogenes
clostridiumdifficile
enterobacter
campylobacter
gonorrhoea
candida
cryptococcus
enterococcus
helicobacterpylori
coccidioides
eskape Targets any of the ESKAPE pathogens (Enterococcus, MRSA, K. pneumoniae,

Acinetobacter, Pseudomonas aeruginosa, Enterobacter)
anyecdc Targets any of the bacteria surveilled by ECDC
Indications
pneumonia

Summary, Drug Disease

cystic fibrosis
systemic
surgery Includes spelling variations
catheter
resistant
bacterial vaginosis
tb Tuberculosis, includes spelling variations
bloodstream
skin Summary
intra-abdominal Summary
urinary Summary
Severity
uncomplicated Summary
complicated Summary, Drug Disease
severe Summary, Drug Disease
hospital Summary, Drug Disease
threat Summary
Other
formulation Summary
phage Summary
combination Summary
probiotic Summary
prevent Prevent or Prophylaxis with spelling variations Summary
usa Drug Country
ctdotgov Includes a link to clinicaltrials.gov Phase I, Phase II, Phase III
topical Summary
derivative Summary
peptide Summary
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A.2 Additional results

Table 7: Results (by development phase)

(1) (2) (3) (4) (5) (6)
VARIABLES Phase I Phase II Phase III Phase I Phase II Phase III

Pull 0.1586 0.0362 -0.5028*** 0.1557 -0.2481** -0.4399***
(0.2184) (0.1616) (0.1167) (0.2638) (0.1038) (0.1226)

Pull × Post 2012 -0.0208 0.3101* 0.6074*** -0.1613 0.7935*** 0.3286*
(0.2346) (0.1790) (0.1494) (0.3118) (0.0981) (0.1975)

Pull × Post 2012 × New technology 0.0734 -0.7396*** 0.5359**
(0.3695) (0.2642) (0.2603)

Push flow ($M) 0.0243*** -0.0042 -0.0100 0.0338*** -0.0078 -0.0556***
(0.0045) (0.0026) (0.0072) (0.0057) (0.0067) (0.0100)

Push flow × New technology -0.0151** 0.0036 0.1064***
(0.0071) (0.0078) (0.0128)

Push stock ($M) -0.0007 -0.0008 0.0011 -0.0007 -0.0009 0.0080
(0.0010) (0.0020) (0.0105) (0.0010) (0.0021) (0.0105)

Push (dummy) -0.0924** -0.1972*** -0.1456*** -0.0866** -0.1869*** -0.1652***
(0.0368) (0.0318) (0.0379) (0.0373) (0.0357) (0.0387)

Observations 4,634 3,363 1,897 4,634 3,363 1,897
R-squared 0.0591 0.0447 0.1118 0.0612 0.0458 0.1143

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 8: Results (antibiotics subsample)

(1) (2) (3) (4) (5) (6)
VARIABLES Preclinical Preclinical Trials Trials Preclinical Trials

Pull -0.0722 -0.0722 -0.1188 -0.1120 0.0087 -0.0299
(0.0532) (0.0532) (0.1400) (0.1408) (0.0803) (0.2210)

Pull × Post 2012 0.3078*** 0.3077*** 0.3810** 0.3661** 0.0635 0.2856
(0.0995) (0.0991) (0.1673) (0.1698) (0.1296) (0.2662)

Pull × Post 2012 × New technology 0.5205*** 0.1634
(0.1820) (0.3116)

Push flow ($M) 0.0005 0.0009 0.0328** 0.0206 0.0149*** 0.0254
(0.0020) (0.0019) (0.0131) (0.0139) (0.0035) (0.0163)

Push flow × New technology -0.0153*** -0.0120
(0.0033) (0.0196)

Push stock ($M) -0.0005 -0.0022* -0.0023*
(0.0012) (0.0013) (0.0013)

Push (dummy) -0.0342 0.2276* -0.0463 0.2475**
(0.0777) (0.1192) (0.0728) (0.1220)

Observations 1,101 1,101 342 342 1,101 342
R-squared 0.1535 0.1536 0.3135 0.3178 0.1630 0.3207

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 9: Excluding completely QIDP projects started before 2012

(1) (2) (3) (4) (5) (6)
VARIABLES Preclinical Preclinical Trials Trials Preclinical Trials

Pull -0.0741 -0.0742 -0.0422 -0.0465 -0.0049 -0.2303**
(0.0540) (0.0540) (0.1128) (0.1125) (0.0808) (0.1083)

Pull × Post 2012 0.3146*** 0.3151*** 0.2707* 0.2930** 0.0669 0.1964
(0.1007) (0.1000) (0.1381) (0.1376) (0.1338) (0.1899)

Pull × Post 2012 × New technology 0.5015*** 0.0008
(0.1806) (0.2597)

Push flow ($M) 0.0023 0.0024 -0.0061** 0.0016 0.0123** 0.0159*
(0.0031) (0.0030) (0.0027) (0.0054) (0.0062) (0.0090)

Push flow × New technology -0.0110 -0.0162
(0.0069) (0.0108)

Push stock ($M) -0.0023*** -0.0008 -0.0008
(0.0009) (0.0006) (0.0005)

Push (dummy) -0.0054 -0.1270*** -0.0058 -0.1315***
(0.0418) (0.0310) (0.0442) (0.0275)

Observations 27,794 27,794 9,861 9,861 27,794 9,861
R-squared 0.0448 0.0448 0.0855 0.0861 0.0455 0.0871

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 10: Results from logit estimation

(1) (2) (3) (4)
VARIABLES Preclinical Trials Preclinical Trials

Pull -0.5078 0.0127 -0.0228 -0.6403
(0.4564) (0.5075) (0.5233) (0.7023)

Pull × Post 2012 1.7048*** 1.0207* 0.4574 1.0863
(0.5689) (0.5911) (0.7251) (0.7956)

Pull × Post 2012 × New technology 2.9776** -0.4743
(1.3663) (1.1471)

Push flow ($M) 0.0135 0.0054 0.0607* 0.0439
(0.0131) (0.0225) (0.0322) (0.0391)

Push flow × New technology -0.0529 -0.0435
(0.0362) (0.0478)

Push stock ($M) -0.0045 -0.0043
(0.0031) (0.0028)

Push (dummy) -0.0171 -0.5768*** -0.0183 -0.5836***
(0.2315) (0.1389) (0.2421) (0.1308)

Observations 27,785 9,888 27,785 9,888
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 11: Results for a subsample of projects that started before 2018

(1) (2) (3) (4) (5) (6)
VARIABLES Preclinical Preclinical Trials Trials Preclinical Trials

Pull -0.0716 -0.0716 -0.0121 -0.0158 -0.0041 -0.1426
(0.0533) (0.0533) (0.1121) (0.1121) (0.0796) (0.1267)

Pull × Post 2012 0.2667*** 0.2669*** 0.2382* 0.2440** 0.0300 0.2953*
(0.1019) (0.1019) (0.1215) (0.1215) (0.1323) (0.1535)

Pull × Post 2012 × New technology 0.4513** -0.1709
(0.1975) (0.2357)

Push flow ($M) -0.0126*** -0.0113*** -0.0070*** -0.0019 -0.0298*** 0.0522***
(0.0048) (0.0029) (0.0025) (0.0058) (0.0035) (0.0047)

Push flow × New technology 0.0242*** -0.0564***
(0.0042) (0.0047)

Push stock ($M) -0.0067*** -0.0056*** -0.0054***
(0.0008) (0.0008) (0.0008)

Push (dummy) -0.0099 -0.1084*** -0.0069 -0.1165***
(0.0332) (0.0303) (0.0342) (0.0299)

Observations 25,523 25,523 8,642 8,642 25,523 8,642
R-squared 0.0445 0.0445 0.0924 0.0928 0.0454 0.0937

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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B Structural model
B.1 Motivation

Table 12: Probability of discontinuation (antibiotics, 2000-2020)

(1) (2) (3) (4)
VARIABLES

Same technology, same or later phase discontinuations at t-1 0.000977** 0.001078***
(0.000387) (0.000231)

Same technology, same or later phase discontinuations at t (other projects) 0.000431 0.000898***
(0.000345) (0.000224)

Observations 3,393 3,393 3,699 3,699
R-squared 0.320207 0.318940 0.139971 0.138583
project FE X X
year FE X X X X
technology FE X X

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

B.2 Linear representation
For a project in phase 3 we have:

Vi3k =

γi3 +
∑

d′ qd′Vidk′
d′
+
∑
m6=i

λd(m)
∑
j

σmd(m)jkVi3,l(m,j,k) + λ3Emax(Vi4,l(i,1,k) + εi3k, 0)

ρ+
∑

d′ qd′ +
∑
m6=i

λd(m) + λ3

(10)

Let Vd be a K × 1 vector of Vidk

Let Q0 denote a K ×K vector, such that its (k, k′) element is equal to qd′ for all k′ that are
the result of an entry into development of a new molecule in state k, and equal to 0 otherwise.

Let Σm denote the K ×K transition matrix implied by the choice probabilities σmd(m).
Let Emax(Vd) denote a K × 1 vector which kth element corresponds to Emax(Vi,d+1,l(i,1,k)+

εidk, 0)
Let Dc be the K × K diagonal matrix, which (k, k) element contains the denominator of

Vidk, 1

ρ+
∑
d

qd +
∑
m6=i

λd(m) + λd

Then, stacking expressions from Equation 10 for all the states k, we have the linear repre-
sentation of the value function:

V3 = D3

γi3 +Q0V3 +
∑
m 6=i

ΣmV3 + λ3Emax(V4)

 (11)

Solving for V3:
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D−1
3 V3 = γi3 +Q0V3 +

∑
m 6=i

ΣmV3 + λ3Emax(V4)

D−1
3 V3 −Q0V3 −

∑
m 6=i

ΣmV3 = γi3 + λ3Emax(V4)D−1
3 −Q0 −

∑
m6=i

Σm

V3 = γi3 + λ3Emax(V4)

V3 =

D−1
3 −Q0 −

∑
m 6=i

Σm

−1

(γi3 + λ3Emax(V4))

And in general, for any phase d ∈ {1, 2, 3}:

Vd =

D−1
d −Q0 −

∑
m 6=i

Σm

−1

(γid + λdEmax(Vd+1)) (12)

B.3 Estimation: Step 1

Table 13: Parameter values used in the model

Parameter Value

Move arrival rates
λ2 0.273
λ3 0.303

Exogenous entry rates
q1 0.072
q2 0.028
q3 0.017

Cost
c2 1.094
c3 2.726
c4 10.8

Approval probability
p 0.84

Discount factor
ρ 0.05
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Table 14: CCP estimation

Estimate Standard Error z P> |z|
Constant 0.7575 0.131 5.788 0.000
s1k -0.9815 0.148 -6.634 0.000
s2k 0.1634 0.122 1.343 0.179
s3k 0.4298 0.144 2.995 0.003
s4k 0.3610 0.098 3.681 0.000
Phase 2 -0.9232 0.176 -5.231 0.000
Phase 3 -0.9218 0.212 -4.357 0.000
(s1k)

2 0.1443 0.032 4.558 0.000
(s2k)

2 0.0137 0.024 0.571 0.568
(s3k)

2 -0.0537 0.025 -2.147 0.032
(s4k)

2 -0.0513 0.013 -4.039 0.000
(s1k)

3 -0.0079 0.002 -4.335 0.000
(s2k)

3 -0.0005 0.001 -0.378 0.705
(s3k)

3 0.0017 0.001 1.388 0.165
(s4k)

3 0.0016 0.000 3.349 0.001
s1k× Phase 2 0.3083 0.101 3.059 0.002
s2k× Phase 2 -0.5183 0.077 -6.728 0.000
s3k× Phase 2 0.3888 0.093 4.158 0.000
s4k× Phase 2 0.0282 0.056 0.508 0.612
s1k× Phase 3 0.3725 0.114 3.256 0.001
s2k× Phase 3 -0.2315 0.100 -2.323 0.020
s3k× Phase 3 -0.3755 0.106 -3.542 0.000
s4k× Phase 3 0.3063 0.074 4.142 0.000

Observations: 1524 Pseudo R-squ.: 0.1266
Df Residuals: 1501 Log-Likelihood: -879.88
Df Model: 22 LL-Null: -1007.5

B.4 Estimation: Step 2 details
There are 3 types of decisions observed, advancing from phase 1 to phase 2, from 2 to 3 and
from 3 to approval (d = 4). It’s easier to start from the last decision:

3 → 4 For l3k0(θ, q, λ, σ̃) I need σ̃i31k0(θ, q, λ, σ̃), so I need Vi,4,l(i,1,k0). As shown in Equation 5,
Vi4 is independent of the state k:

Vi4 =
−c4 + λ4pπi

ρ+ 1

2 → 3 For l2k0(θ, q, λ, σ̃) I need σ̃i21k0(θ, q, λ, σ̃), so I need Vi,3,l(i,1,k0). l(i, 1, k0) = k′ is the
state adjacent to k0 with one less project in phase 2 and one more in phase 3 (due to
i’s advancement from 2 to 3). For a k0 = (s1k, s2k, s3k, s4k), k′ = (s1k′ , s2k′ , s3k′ , s4k′) =
(s1k, s2k − 1, s3k + 1, s4k)
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Vi3k′ =

−ci3 +

1.︷ ︸︸ ︷∑
d′

qd′Vi3k′
d′
+

2.︷ ︸︸ ︷∑
m 6=i

λd(m)

∑
j

σmd(m)jk′Vi3,l(m,j,k′) +

3.︷ ︸︸ ︷
λ2Emax(Vi,4,l(i,1,k′) + εi3k′ , 0)

ρ+
∑

d′ qd′ +
∑
m 6=i

λd(m) + λ3

Now I need to disaggregate
∑
m 6=i

λd(m)

∑
j

σmd(m)jk′Vi3,l(m,j,k′) depending on m’s phase d(m).

∑
m 6=i

λd(m)

∑
j

σmd(m)jk′Vi3,l(m,j,k′) =
∑

m1:d(m1)=1

λ1

∑
j

σm11jk′Vi3,l(m1,j,k′)

+
∑

m2:d(m2)=2

λ2

∑
j

σm22jk′Vi3,l(m2,j,k′)

+
∑

m3:d(m3)=3

λ3

∑
j

σm33jk′Vi3,l(m3,j,k′)

Then, using Equation 8 I can write each Vi3k′
x

in expressions 1-3 as a function of σi21k′′
x
. For

example, Vi3k′
11

in terms of CCPs will be equal to ln(
σi21k′′

11

1−σi21k′′
11

), where k′′11 is a state that results
in k′11 after a project in phase 2 advances. So if k′11 = (s1k − 1, s2k − 1, s3k + 1, s4k), then
k′′11 = (s1k − 1, s2k, s3k, s4k).

from expression 1.:
k′1 = (s1k + 1, s2k − 1, s3k + 1, s4k) k′′1 = (s1k + 1, s2k, s3k, s4k)

k′2 = (s1k, s2k, s3k + 1, s4k) k′′2 = (s1k, s2k + 1, s3k, s4k)

k′3 = (s1k, s2k − 1, s3k + 2, s4k) k′′3 = (s1k, s2k, s3k + 1, s4k)

from expression 2.:
k′21 = l(m1, 1, k

′) = (s1k − 1, s2k, s3k + 1, s4k) k′′21 = (s1k − 1, s2k + 1, s3k, s4k)

k′22 = l(m1, 0, k
′) = (s1k − 1, s2k − 1, s3k + 1, s4k) k′′22 = (s1k − 1, s2k, s3k, s4k)

k′23 = l(m2, 1, k
′) = (s1k, s2k − 2, s3k + 2, s4k) k′′23 = (s1k, s2k − 1, s3k + 1, s4k)

k′24 = l(m2, 0, k
′) = (s1k, s2k − 2, s3k + 1, s4k) k′′24 = (s1k, s2k − 1, s3k, s4k)

k′25 = l(m3, 1, k
′) = (s1k, s2k − 1, s3k, s4k + 1) k′′25 = (s1k, s2k, s3k − 1, s4k + 1)

k′26 = l(m3, 0, k
′) = (s1k, s2k − 1, s3k, s4k) k′′26 = (s1k, s2k, s3k − 1, s4k)

Then I can rewrite Vi3k′ as:

Vi3k′ =
1

ρ+
∑

d′ qd′ +
∑
m 6=i

λd(m) + λ3

×

−ci3 +

1.︷ ︸︸ ︷
q1Vi3k′

1
+ q2Vi3k′

2
+ q3Vi3k′

3

+

2.1.︷ ︸︸ ︷∑
m1:d(m1)=1,m1 6=i

λ1

(
σm11k′Vi3,k′

21
+ (1− σm11k′)Vi3,k′

22

)

+

2.2.︷ ︸︸ ︷∑
m2:d(m2)=2:m2 6=i

λ2

(
σm21k′Vi3,k′

23
+ (1− σm21k′)Vi3,k′

24

)

+

2.3.︷ ︸︸ ︷∑
m3:d(m3)=3:m3 6=i

λ3

(
σm31k′Vi3,k′

25
+ (1− σm31k′)Vi3,k′

26

)
+

3.︷ ︸︸ ︷
λ3

(
ln(1 + eVi4) + ν

)
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plugging in the CCPs:

=
1

ρ+
∑

d′ qd′ +
∑
m6=i

λd(m) + λ3

×

[
−ci3

+

1.︷ ︸︸ ︷
q1 ln(

σi21k′′
1

1− σi21k′′
1

) + q2 ln(
σi21k′′

2

1− σi21k′′
2

) + q3 ln(
σi21k′′

3

1− σi21k′′
3

)

+

2.1.︷ ︸︸ ︷∑
m1:d(m1)=1,m1 6=i

λ1

(
σm11k′ ln(

σi21k′′
21

1− σi21k′′
21

) + (1− σm11k′) ln(
σi21k′′

22

1− σi21k′′
22

)

)

+

2.2.︷ ︸︸ ︷∑
m2:d(m2)=2:m2 6=i

λ2

(
σm21k′ ln(

σi21k′′
23

1− σi21k′′
23

) + (1− σm21k′) ln(
σi21k′′

24

1− σi21k′′
24

)

)

+

2.3.︷ ︸︸ ︷∑
m3:d(m3)=3:m3 6=i

λ3

(
σm31k′ ln(

σi21k′′
25

1− σi21k′′
25

) + (1− σm31k′) ln(
σi21k′′

26

1− σi21k′′
26

)

)

+

3.︷ ︸︸ ︷
λ3

(
ln(1 + e

−ci4+p4πi
ρ+1 ) + ν

)

Finally, assuming that the strategies are symmetric (σmdjk = σdjk), I can simplify:

Vi3k′ =
1

ρ+
∑

d′ qd′ +
∑
m 6=i

λd(m) + λ3

×

[
−ci3

+

1.︷ ︸︸ ︷
q1 ln(

σi21k′′
1

1− σi21k′′
1

) + q2 ln(
σi21k′′

2

1− σi21k′′
2

) + q3 ln(
σi21k′′

3

1− σi21k′′
3

)

+

2.1.︷ ︸︸ ︷
s1k′λ1

(
σm11k′ ln(

σi21k′′
21

1− σi21k′′
21

) + (1− σm11k′) ln(
σi21k′′

22

1− σi21k′′
22

)

)

+

2.2.︷ ︸︸ ︷
s2k′λ2

(
σm21k′ ln(

σi21k′′
23

1− σi21k′′
23

) + (1− σm21k′) ln(
σi21k′′

24

1− σi21k′′
24

)

)

+

2.3.︷ ︸︸ ︷
(s3k′ − 1)λ3

(
σm31k′ ln(

σi21k′′
25

1− σi21k′′
25

) + (1− σm31k′) ln(
σi21k′′

26

1− σi21k′′
26

)

)

+

3.︷ ︸︸ ︷
λ3

(
ln(1 + e

−c4+pπi
ρ+1 )

)

1 → 2 For l1k0(θ, q, λ, σ̃) I need σ̃i11k0(θ, q, λ, σ̃), so I need Vi,2,l(i,1,k0). l(i, 1, k0) = k′ is the
state adjacent to k0 with one less project in phase 1 and one more in phase 2 (due to
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i’s advancement from 1 to 2). For a k = (s1k, s2k, s3k, s4k), k′ = (s1k′ , s2k′ , s3k′ , s4k′) =
(s1k − 1, s2k + 1, s3k, s4k)

Vi2k′ =

−ci2 +

1.︷ ︸︸ ︷∑
d′

qd′Vi2k′
d
+

2.︷ ︸︸ ︷∑
m6=i

λd(m)

∑
j

σmd(m)jk′Vi2,l(m,j,k′) +

3.︷ ︸︸ ︷
λ2Emax(Vi,3,l(i,1,k′) + εi2k′ , 0)

ρ+
∑

d′ qd′ +
∑
m 6=i

λd(m) + λ2

Now I need to disaggregate
∑
m 6=i

λd(m)

∑
j

σmd(m)jk′Vi2,l(m,j,k′) depending on m’s phase:

∑
m6=i

λc(m)

∑
j

σmd(m)jk′Vi2,l(m,j,k′) =
∑

m1:d(m1)=1,m1 6=i

λ1

∑
j

σm1jk′Vi2,l(m1,j,k′)

+
∑

m2:d(m2)=2:m2 6=i

λ2

∑
j

σm2jk′Vi2,l(m2,j,k′)

+
∑

m3:d(m3)=3:m3 6=i

λ3

∑
j

σm3jk′Vi2,l(m3,j,k′)

Then, using Equation 8 I can write each Vi2k′
x

in expressions 1-3 as a function of σi11k′′
x
. For

example, Vi2k′
11

in terms of CCPs will be equal to ln(
σi11k′′

11

1−σi11k′′
11

), where k′′11 is a state that results
in k′11 after a project in phase 1 advances. So if k′11 = (s1k − 1, s2k − 1, s3k + 1, s4k), then
k′′11 = (s1k − 1, s2k, s3k, s4k).

from expression 1.:
k′1 = (s1k, s2k + 1, s3k, s4k) k′′1 = (s1k + 1, s2k, s3k, s4k)

k′2 = (s1k − 1, s2k + 2, s3k, s4k) k′′2 = (s1k, s2k + 1, s3k, s4k)

k′3 = (s1k − 1, s2k + 1, s3k + 1, s4k) k′′3 = (s1k, s2k, s3k + 1, s4k)

from expression 2.:
k′21 = l(m1, 1, k

′) = (s1k − 2, s2k + 2, s3k, s4k) k′′21 = (s1k − 1, s2k + 1, s3k, s4k) = k′

k′22 = l(m1, 0, k
′) = (s1k − 2, s2k + 1, s3k, s4k) k′′22 = (s1k − 1, s2k, s3k, s4k)

k′23 = l(m2, 1, k
′) = (s1k − 1, s2k, s3k + 1, s4k) k′′23 = (s1k, s2k − 1, s3k + 1, s4k)

k′24 = l(m2, 0, k
′) = (s1k − 1, s2k, s3k, s4k) k′′24 = (s1k, s2k − 1, s3k, s4k)

k′25 = l(m3, 1, k
′) = (s1k − 1, s2k + 1, s3k − 1, s4k + 1) k′′25 = (s1k, s2k, s3k − 1, s4k + 1)

k′26 = l(m3, 0, k
′) = (s1k − 1, s2k + 1, s3k − 1, s4k) k′′26 = (s1k, s2k, s3k − 1, s4k)

from expression 3.:
k′3 = l(i, 1, k′) = (s1k − 1, s2k, s3k + 1, s4k) k′′3 = (s1k − 1, s2k + 1, s3k, s4k) = k′
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Then I can rewrite Vi2k′ as:

Vi2k′ =
1

ρ+
∑

d′ qd′ +
∑
m 6=i

λd(m) + λ2

×

γi2 + 1.︷ ︸︸ ︷
q1Vi2k′

1
+ q2Vi2k′

2
+ q3Vi2k′

3

+

2.1.︷ ︸︸ ︷∑
m1:d(m1)=1,m1 6=i

λ1

(
σm11k′Vi2,k′

21
+ (1− σm11k′)Vi2,k′

22

)

+

2.2.︷ ︸︸ ︷∑
m2:d(m2)=2:m2 6=i

λ2

(
σm21k′Vi2,k′

23
+ (1− σm21k′)Vi2,k′

24

)

+

2.3.︷ ︸︸ ︷∑
m3:d(m3)=3:m3 6=i

λ3

(
σm31k′Vi2,k′

25
+ (1− σm31k′)Vi2,k′

26

)
+

3.︷ ︸︸ ︷
λ2Emax

(
Vi,3,k′

3
+ εi2k, 0

)

plugging in the CCPs:

=
1

ρ+
∑

d′ qd′ +
∑
m6=i

λd(m) + λ2

×

[
−ci2

+

1.︷ ︸︸ ︷
q1 ln(

σi11k′′
1

1− σi11k′′
1

) + q2 ln(
σi11k′′

2

1− σi11k′′
2

) + q3 ln(
σi11k′′

3

1− σi11k′′
3

)

+

2.1.︷ ︸︸ ︷∑
m1:d(m1)=1,m1 6=i

λ1

(
σm11k′ ln(

σi11k′′
21

1− σi11k′′
21

) + (1− σm11k′) ln(
σi11k′′

22

1− σi11k′′
22

)

)

+

2.2.︷ ︸︸ ︷∑
m2:d(m2)=2:m2 6=i

λ2

(
σm21k′ ln(

σi11k′′
23

1− σi11k′′
23

) + (1− σm21k′) ln(
σi11k′′

24

1− σi11k′′
24

)

)

+

2.3.︷ ︸︸ ︷∑
m3:d(m3)=3:m3 6=i

λ3

(
σm31k′ ln(

σi11k′′
25

1− σi11k′′
25

) + (1− σm31k′) ln(
σi11k′′

26

1− σi11k′′
26

)

)

+

3.︷ ︸︸ ︷
λ2

(
ln(1 +

1

1− σi21k′′
3

)

)

Finally, assuming that the strategies are symmetric (σmdjk = σdjk), I can simplify:
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Vi3k′ =
1

ρ+
∑

d′ qd′ +
∑
m 6=i

λd(m) + λ2

×

[
−ci2

+

1.︷ ︸︸ ︷
q1 ln(

σi11k′′
1

1− σi11k′′
1

) + q2 ln(
σi11k′′

2

1− σi11k′′
2

) + q3 ln(
σi11k′′

3

1− σi11k′′
3

)

+

2.1.︷ ︸︸ ︷
s1k′λ1

(
σm11k′ ln(

σi11k′′
21

1− σi11k′′
21

) + (1− σm11k′) ln(
σi11k′′

22

1− σi11k′′
22

)

)

+

2.2.︷ ︸︸ ︷
(s2k′ − 1)λ2

(
σm21k′ ln(

σi11k′′
23

1− σi11k′′
23

) + (1− σm21k′) ln(
σi11k′′

24

1− σi11k′′
24

)

)

+

2.3.︷ ︸︸ ︷
s3k′λ3

(
σm31k′ ln(

σi11k′′
25

1− σi11k′′
25

) + (1− σm31k′) ln(
σi11k′′

26

1− σi11k′′
26

)

)

+

3.︷ ︸︸ ︷
λ3

(
ln(1 + e

−c4+pπi
ρ+1 )

)

B.5 Simulations
Basing off Equation (3), at any point in time, one of three types of events will occur: exogenous
arrival of a project in development, project move due to a firm’s decision, or no change.

In particular:

1. With probabilities qd′h, there is an exogenous arrival of a new project into development
at phase c

2. With probabilities sdkλdh, one of the projects move due to a firm’s decision

3. With the remaining probability there is no change.

In the simulations, I set h to one day ( 1
365 , as the other parameters are defined at the annual

basis), and take an initial set of projects. In each iteration I draw a uniform random e which
defines the type of the event. The probability of a decision taking place in a given technological
class can vary in each period, as it depends on the number of projects in the different phases of
development (sdk). The different events have the following consequences:

1. Arrival:

• Adjustment of the state variable
• Draws of the project’s characteristics (QIDP eligibilty) using pre-determined prob-

abilities

2. Decisions in phases 1 and 2:

(a) Draw a project that gets to take a decision
(b) Determine whether the project receives the push incentive (draw a random uniform

and compare to the probability of push)
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(c) Take a draw of εick
• If Vi,c+1,l(i,1,k) + εick > 0 the project moves forward
• Otherwise, the project is discontinued

(d) Adjustment of the state variable

3. Decisions in phase 3:

(a) Draw a project that gets to take a decision
(b) Take a draw of εi3k

• If Vi4 + εi3k > 0 the project moves to approval (dropped from the set of active
projects and saved in a list of projects in approval)

• Otherwise, the project is discontinued
(c) Adjustment of the state variable

In parallel, the process of an exogenous arrival of new technologies into the pipeline takes
place, expanding the number of technologies active in development according to rates observed
in the data.
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